UNIVERSIDAD DE LA RIOJA / P.A.U. – LOGSE – SEPTIEMBRE 2002 / ENUNCIADOS

OPCIÓN A

CUESTIÓN 1.- Dados los elementos litio, flúor, potasio y cesio, ordénalos de forma creciente según:

- a) Su radio atómico.
- b) Su primera energía de ionización.

Justifica las respuestas.

PROBLEMA 1.- A una aleación de cinc y aluminio que pesa 0,2 g se adiciona ácido sulfúrico, produciéndose 120 mL de hidrógeno gas medido a 25 ° C y 1 atm. Calcula la composición de la aleación y la masa de ácido necesaria para reaccionar con todo el cinc contenido en la muestra.

DATOS: $A_r(H) = 1$ u; $A_r(O) = 16$ u; $A_r(S) = 32$ u; $A_r(Zn) = 65,4$ u; $A_r(Al) = 27$ u; R = 0,082 atm·L·mol⁻¹·K⁻¹.

Resultado: La composición es 77 % de Zn y 23 % de Al; 0,23 g de H₂SO₄.

PROBLEMA 2.- Una reacción tiene una constante de velocidad que se duplica cuando la temperatura aumenta de 25 ° C a 35 ° C. ¿Cuál será su energía de activación? DATOS: $R = 8,31 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$.

Resultado: Ea = $52,87 \text{ kJ} \cdot \text{mol}^{-1}$.

CUESTIÓN 2.- Dados los siguientes potenciales estándar de reducción:

 $E^{o} [Pb^{2+} (aq)/Pb (s)] = -0.13 V; E^{o} [Li^{+} (aq)/Li (s)] = -3.05 V; E^{o} [Ni^{2+} (aq)/Ni (s)] = -0.25 V; E^{o} [Fe^{2+} (aq)/Fe (s)] = -0.44 V; E^{o} [Na^{+} (aq)/Na (s)] = -2.71 V; E^{o} [Ag^{+} (aq)/Ag (s)] = 0.8 V.$

- a) Indica cuáles de estos metales se oxidan más fácilmente que el hierro.
- b) ¿Cuál es el ión más fácil de reducir? ¿Cuál es el reductor más fuerte? ¿Cuál es el oxidante más fuerte?
- c) ¿Qué dos electrodos de los posibles formarían una pila con mayor fuerza electromotriz? Dibuja un esquema de la pila indicando los procesos que tienen lugar en el ánodo y en el cátodo.

CUESTIÓN 3.- Formula o nombra los siguientes compuestos:

- a) Manganato de mercurio (II); b) Peróxido de bario; c) Sulfato ácido de litio;
- d) (NH₄)NO₃; e) Ba(OH)₂; f) CuBr.

OPCIÓN B

CUESTIÓN 1.- Comenta la veracidad o falsedad de las siguientes afirmaciones justificando las respuestas:

- a) En la molécula de etino la hibridación de los átomos de carbono es sp².
- b) Entre las moléculas de amoníaco sólido existen fuerzas de atracción dipolo-dipolo.
- c) Los sólidos iónicos son conductores ya que están formados por iones.
- d) La hibridación del átomo de boro en la molécula de BF₃ es sp².

PROBLEMA 1.- Dada la reacción en fase gaseosa (que es necesario ajustar):

 $amoníaco + oxígeno \quad \rightarrow \quad monóxido \ de \ nitrógeno + agua.$

Calcula:

- a) El calor de reacción estándar por mol de amoníaco.
- b) El calor absorbido o desprendido cuando se mezclan 5 g de amoníaco con 5 g de oxígeno. DATOS: ΔH_f^0 (NH₃) = -46 kJ· mol⁻¹; ΔH_f^0 (NO) = 90 kJ· mol⁻¹; ΔH_f^0 (H₂O)(g) = -242 kJ· mol⁻¹; A_r (N) = 14 u; A_r (O) = 16 u; A_r (H) = 1 u.

Resultado: a) $\Delta H_r^0 = -227 \text{ kJ} \cdot \text{mol}^{-1}$; b) Q = -28,33 kJ.

PROBLEMA 2.- Para el equilibrio N_2O_4 (g) \leftrightarrows 2 NO_2 (g), la constante $K_c = 0.671$ a 45 ° C. Un reactor de 1 L se llena con N_2O_4 a 10 atm a dicha temperatura. Calcula la presión total y la fracción molar de las distintas especies cuando se alcanza el equilibrio.

Resultado: P = 14,76 atm; $\chi_{N_2O_4} = 0,353$; $\chi_{NO_2} = 0,647$.

PROBLEMA 3.- Las constantes de disociación de los ácidos fórmico y benzoico, ambos monopróticos, es 1,8·10⁻⁴ y 6,6·10⁻⁵, respectivamente. Calcula:

a) La concentración que debe tener una disolución de ácido fórmico para dar un pH igual al de una

- disolución de ácido benzoico 0,1 M.
- b) El grado de disociación del ácido fórmico en dicha disolución.

Resultado: a) [HCOOH] = $3.4 \cdot 10^{-2}$ M; b) $\alpha = 7.59$ %.

CUESTIÓN 2.- Explica la síntesis del amoniaco señalando las condiciones de presión y temperatura que favorecen dicho proceso. Razona sobre la influencia que tiene el catalizador en dicha síntesis.