UNIVERSIDADES DE MURCIA / P.A.U. – LOGSE – SEPTIEMBRE 2011 / ENUNCIADOS

OPCIÓN A

CUESTIÓN 1.- Los siguientes diagramas muestran representaciones de configuraciones electrónicas de elementos:

- a) ¿Cuál o cuáles son válidas y cuál o cuáles incorrectas?
- b) De las representaciones válidas ¿cuál o cuáles representan un estado fundamental y cuál o cuáles un estado excitado?
 Razona la respuesta.

CUESTIÓN 2.- Explica qué tipo de enlace se rompe en cada uno de los siguientes procesos:

- a) Fusión del diamante.
- b) Disolución de cloruro de sodio en agua.

CUESTIÓN 3.- Ajuste la siguiente reacción, en forma molecular, por el método del ion-electrón: NaI (aq) + H_2SO_4 (aq) \rightarrow H_2S (g) + I_2 (s) + I_2 (s) + I_2 (qq) + I_3 (l)

CUESTIÓN 4.- Formula o nombra los siguientes compuestos: CaH₂, CrO₃, SiH₄, C₆H₅OC₆H₅, HCONH₂, manganato de potasio, tricloruro de bismuto, dihidrogenofosfato de calcio, 2-metil-2-butanol y triclorometano.

PROBLEMA 1.- En un recipiente de 5 L, se introducen 3,5 moles de PCl_5 . Se cierra el recipiente y se calienta hasta una temperatura de 525 K. Una vez alcanzado el equilibrio PCl_5 (g) \Rightarrow PCl_3 (g) + Cl_2 (g) la concentración de cloro es 0,2 M. Calcula:

- a) El grado de disociación de PC15 y el valor de Kc en estas condiciones.
- b) La composición de la mezcla y la presión total si en las condiciones anteriores añadimos 0,1 moles de PCl₅ y dejamos que se restablezca el equilibrio.

Resultado: a) $\alpha = 28,57$ %; $K_c = 0,08$; b) moles de: $PCl_5 = 2,445$; $PCl_3 = Cl_2 = 1,155$; P = 40,94 atm.

PROBLEMA 2.- 20 mL de NaOH 0,5 M se mezclan con 10 mL de NaOH 0,25 M. Calcule:

- a) El pH de la disolución resultante.
- b) El volumen de HCl del 20 % de riqueza y 1,056 g · cm⁻³ de densidad necesarios para neutralizar la disolución obtenida.
- c) La concentración de la disolución de HCl expresada en molaridad y en $g \cdot L^{-1}$.

DATOS: $A_r(H) = 1 \text{ u}$; $A_r(Cl) = 35.5 \text{ u}$; $R = 0.082 \text{ atm} \cdot \text{L} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$

Resultado: a) pH = 13,62; b) V = 2,16 mL; c) [HCl] = 5,79 M y 211,335 g · L⁻¹.

OPCIÓN B:

CUESTIÓN 1.- Indica cuál es la configuración de la capa de valencia de los elementos del grupo 16 y explica como varía la afinidad electrónica en dicho grupo.

CUESTIÓN 2.- Calcula el tiempo necesario para producir 2,79 g de I₂ en el ánodo al pasar una corriente de 1,75 A por una disolución de KI.

Resultado: t = 1.211,41 s.

CUESTIÓN 3.- El metanol se puede sintetizar mediante: CO (g) + 2 H₂ (g) \leftrightarrows CH₂OH (g) \triangle H > 0

- a) ¿Como será máximo el rendimiento del proceso, a alta o a baja temperatura?
- b) ¿Como afecta un cambio en la presión total del sistema?

CUESTIÓN 4.- Formula los siguientes compuestos: hidróxido de cinc, seleniuro de hidrógeno, clorito de sodio, ácido 1,2-bencenodicarboxílico y etanal.

Nombra los siguientes compuestos: BeO, As₂S₃, H₄P₂O₇, CH₃CH(CH₃)CH(CH₃)CH₃, NH₂CH₂CH₂NH₂.

PROBLEMA 1.- La glucosa es un azúcar de masa molecular 180 que contiene C, H y O.

- a) Calcula la fórmula molecular de la glucosa si la combustión completa de 1,8 g de la misma producen 2,64 g de CO₂ y 1,08 g de H₂O.
- b) Calcula la entalpía estándar de combustión de la glucosa si las entalpías estándares de formación de la glucosa, dióxido de carbono y agua son $-103,6~\rm kJ\cdot mol^{-1}, -393,5~\rm kJ\cdot mol^{-1}$ y $-284,7~\rm kJ\cdot mol^{-1}$ respectivamente.

Resultado: a) $C_6H_{12}O_6$; b) $\Delta H_c^0 = -3.965,6 \text{ kJ} \cdot \text{mol}^{-1}$.

PROBLEMA 2.- Se mezcla 500 mL de disolución de HNO₃ cuyo pH es 1,0 y 3 litros de disolución de Ba(OH)₂ cuyo pH es 12,0.

- a) Calcule la concentración molar de todas las especies presentes en las disoluciones del ácido y la base originales.
- b) Escribe la reacción de neutralización y calcule el pH resultante considerando que los volúmenes son aditivos.
- c) Calcula el pH de la disolución obtenida al mezclar 500 mL de la disolución original de HNO₃ con 6 L de la disolución original de Ba(OH)₂.

DATOS: $A_r(C) = 12 \text{ u}$; $A_r(H) = 1 \text{ u}$; $A_r(I) = 126.9 \text{ u}$; $A_r(K) = 39.1 \text{ u}$; $A_r(O) = 16 \text{ u}$; F = 96.500 C. **Resultado:** a) $[NO_3^-] = [H_3O^+] = 0.1 \text{ M}$; $[Ba^{2+}] = 0.005 \text{ y}$ $[OH^-] = 0.01 \text{ M}$; b) pH = 2,244; c) pH = 2,81.