UNIVERSIDADES DE MURCIA / P.A.U. – LOGSE – SEPTIEMBRE 2007 / ENUNCIADOS

BLOQUE PRIMERO.-

- 1.- Escribe la configuración electrónica correspondiente al estado fundamental de:
 - a) El elemento de número atómico 43.
 - b) El cuarto gas noble.
 - c) El elemento del tercer período con mayor radio atómico.
 - d) El elemento del grupo 13 con mayor carácter metálico.

Indica en cada caso el símbolo y el nombre del elemento.

- 2.- Muchos antiácidos contienen hidróxido de aluminio como ingrediente activo.
 - a) Escribe la reacción ajustada para la reacción de éste con el HCl de los jugos gástricos del estómago.
 - Determina los gramos de antiácido necesarios para neutralizar 1,5 L de una disolución de HCl cuyo pH es 1,6 si el antiácido contiene un 40 % de hidróxido de aluminio.

DATOS: $A_r(Al) = 27 u$; $A_r(O) = 16 u$; $A_r(H) = 1 u$.

Resultado: b) 2,458 g antiácido.

- 3.- Dados los potenciales estándar de reducción: E^{o} (Fe^{3+}/Fe^{2+}) = 0,77 V y E^{o} ($Cr_{2}O_{7}^{2-}/2Cr^{3+}$) = 1,33 V:
 - a) Justifica en qué sentido se producirá la reacción:

$$Fe_2(SO_4)_3 + Cr_2(SO_4)_3 + H_2O + K_2SO_4 = FeSO_4 + K_2Cr_2O_7 + H_2SO_4.$$

- b) Indica que especie actúa como agente oxidante y cuál como agente reductor.
- c) Ajusta la reacción, en forma molecular, por el método del ión electrón.
- 4.- Razona si son ciertas o falsas las siguientes afirmaciones:
 - a) Si una reacción posee una energía de activación más pequeña que otra, ésta última será siempre más lenta que la primera.
 - b) Cuando se añade un catalizador a una reacción la energía de activación disminuye, por lo tanto, aumenta la velocidad de la misma.
 - c) Un aumento de la temperatura aumenta la velocidad de las reacciones endotérmicas pero disminuye la velocidad de las reacciones exotérmicas.
- 5.- Considera la formación del N_2O_5 (g) mediante la reacción: $2 NO_2$ (g) $+ \frac{1}{2} O_2$ (g) $\Rightarrow N_2O_5$ (g) con un $\Delta H^0 = -55.1$ kJ v $\Delta S^0 = -227$ J, mol^{-1} K^{-1} tenjando adomés en quenta los detes de la table adjunta:

un $\Delta H^{o} = -55,1 \text{ kJ y } \Delta S^{o} = -227 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$, teniendo además en cuenta los datos de la tabla adjunta:

	Sustancia	valor
$\Delta H_{\ f}^{o}$	$NO_{2}\left(g\right)$	$33,2 \text{ kJ} \cdot \text{mol}^{-1}$
S°	$NO_{2}(g)$	239,7 J·mol ⁻¹ ·K ⁻¹
S°	$O_{2}\left(g\right)$	205,1 J·mol ⁻¹ ·K ⁻¹

Calcula:

- a) ΔH_{f}^{o} del $N_{2}O_{5}$ (g).
- b) S^{o} de $N_{2}O_{5}$ (g).
- c) ΔG° de la reacción. ¿Es espontánea la reacción en estas condiciones? Razona la respuesta.

Resultado: a)
$$\Delta H_f^o(N_2O_5) = -121.5 \text{ kJ} \cdot \text{mol}^{-1}; \text{ b) } S^o(N_2O_5) = 354.95 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1};$$
 c) $\Delta G^o = 13 \text{ kJ} \cdot \text{mol}^{-1}.$

6.- Nombra o formula los compuestos: SiO_2 , $NaClO_4$, H_2O_2 , $CH_2OHCHOHCH_2OH$, HOOCCOOH, p-dibromobenceno, fosfina, etilmetilamina, hidróxido de cinc, 4-metil-2-pentino.

BLOOUE SEGUNDO.-

- 7.- En un recipiente metálico de 5 L y a una temperatura de 250 ° C hay inicialmente 30 g de PCl_5 . A esta temperatura el PCl_5 se disocia parcialmente según: PCl_5 (g) \Rightarrow PCl_3 (g) + Cl_2 (g). Cuando se alcanza el equilibrio la presión total es de 2,08 atm. Calcula:
 - a) El grado de disociación del PCl₅ en estas condiciones.
 - b) Las presiones parciales de cada componente.
 - c) La constante de equilibrio $K_{\mbox{\scriptsize p}}.$
 - d) El valor de ΔG° .

DATOS:
$$R = 0.082 \text{ atm} \cdot L \cdot \text{mol}^{-1} \cdot K^{-1}$$
; $R = 8.31 \text{ J} \cdot \text{mol}^{-1} \cdot K^{-1}$; $A_r(P) = 31 \text{ u}$; $A_r(Cl) = 35.5 \text{ u}$. Resultado: a) $\alpha = 68.75 \text{ %}$; b) $P(PCl_5) = 0.389 \text{ atm}$; $P(PCl_3) = P(Cl_2) = 0.849 \text{ atm}$; c) $K_p = 1.85 \text{ atm}$

- 8.- Se valora una disolución acuosa de ácido acético con hidróxido de sodio.
 - a) Calcula la concentración del ácido sabiendo que 25 mL han necesitado 20 mL de NaOH 0,1
 M para alcanzar el punto de equivalencia.
 - b) Razona, haciendo uso de los equilibrios que tengan lugar, si en dicho punto la disolución sería ácida, básica o neutra.
 - c) Calcula el grado de disociación y el pH de la disolución original del ácido.

DATOS: $K_a = 1.8 \cdot 10^{-5}$.

Resultado: a) $[CH_3COOH] = 0.08 M$; b) pH básico; c) $\alpha = 3.86 \%$; pH = 2.51.

- 9.- Para los sólidos CaO, CaCl₂ y KCl:
 - a) Ordénalos de mayor a menor punto de fusión. Razona la respuesta.
 - b) Escribe un ciclo de Born-Haber para CaCl₂.
 - c) A partir de los siguientes datos determina la energía reticular del CaCl₂.

	$\Delta H^{o} (kJ \cdot mol^{-1})$
Entalpía de formación de CaCl ₂ (s)	- 796
Afinidad electrónica de Cl (g)	- 349
Energía de sublimación de Ca (s)	178
Energía de disociación de Cl ₂ (g)	244
1ª energía de ionización de Ca (g)	590
2ª energía de ionización de Ca (g)	1146

Resultado: c) $U = -2605 \text{ kJ} \cdot \text{mol}^{-1}$.