UNIVERSIDADES DE MURCIA / P.A.U. – LOGSE – JUNIO 2012 / ENUNCIADOS OPCIÓN A

CUESTIÓN 1.- Los elementos de número atómico 7 y 15 pertenecen al mismo grupo de la tabla periódica.

- a) Identifica a estos elementos.
- b) Indica sus configuraciones electrónicas.
- c) Justifica, en función de su configuración electrónica, que:
- c1) El elemento de número atómico 7 actúe con valencia 3.
- c2) El elemento de número atómico 15 actúe con valencias 3 y 5.

CUESTIÓN 2.- Nombra o formula los siguientes compuestos: ciclopenteno; 1,3-butadieno; naftaleno; CH₃ - CO - CH₂ - CH₃; CH₃ - CHO; sulfato de plata; óxido de cinc; HMnO₄; Cl₂O; NH₄IO₄.

PROBLEMA 3.- Calcula la constante de disociación del HNO₂ si una disolución 0,1 M presenta un pH = 2,2.

Resultado: $K_a = 4.24 \cdot 10^{-4}$.

CUESTIÓN 4.- Los productos de solubilidad del AgCl y Ag_2CrO_4 son $1,6 \cdot 10^{-10}$ y $1,9 \cdot 10^{-12}$, respectivamente. ¿Cuál de los dos es más soluble?

PROBLEMA 5.- Sabiendo que las entalpías de combustión del etano (g) y eteno (g) son: $-1.559,7 \text{ y} - 1.410,9 \text{ kJ} \cdot \text{mol}^{-1}$, respectivamente, y que las entalpías de formación del agua (l) y dióxido de carbono (g) son $-285,8 \text{ y} -393,5 \text{ kJ} \cdot \text{mol}^{-1}$, respectivamente:

- a) Calcula las entalpías de formación del etano y eteno.
- b) La variación de entalpía para el proceso: $C_2H_4\left(g\right) + H_2\left(g\right) \rightarrow C_2H_6\left(g\right)$.
- c) Para el proceso anterior la variación de entropía es de -110,6 J · K $^{-1}$. Razona sobre la espontaneidad del proceso.

CUESTIÓN 6.- Si se construye una pila con los elementos Cu/Cu²⁺ y Al/Al³⁺, cuyos potenciales estándar de reducción son 0,34 y – 1,67 V, respectivamente:

- a) Escribe las reacciones que tienen lugar en cada uno de los electrodos.
- b) Reacción global en la pila.
- c) Haz un esquema de la pila indicando todos los elementos necesarios para su funcionamiento.
- d) ¿En qué sentido circulan los electrones?

OPCIÓN B

CUESTIÓN 1.- Utilizando la teoría de Lewis:

- a) Representa la estructura de la molécula de ácido nítrico.
- b) Indica los tipos de enlace covalente que se presentan.

CUESTIÓN 2.- Nombra o formula los siguientes compuestos: ciclohexano; trifenilamina; tolueno; $CH_3 - CHOH - CH_3$; $CH_2 = CH_2$; N_2O ; $HClO_4$; sulfuro cromoso; ácido ortobórico; hidróxido de níquel (II).

PROBLEMA 3.- La constante del producto de solubilidad del hidróxido de magnesio es $3 \cdot 10^{-11}$. Calcula:

- a) La solubilidad de dicha sustancia.
- b) El pH de la disolución.

Resultado: a) $S = 1.96 \cdot 10^{-4}$; b) pH = 10.59.

CUESTIÓN 4.- Justifica, mediante los equilibrios apropiados y sin necesidad de cálculos numéricos, si las disoluciones acuosas de las siguientes sustancias tendrán pH ácido, básico o neutro.

- a) Cianuro sódico, K_a (HCN) = $4.8 \cdot 10^{-10}$.
- b) Nitrato potásico.
- c) Nitrato amónico, K_b (NH₃) = 1,7 · 10⁻⁵.

PROBLEMA 5.- Para valorar una muestra de nitrito de potasio impuro se disuelve ésta en 100 mL de agua, se acidula con ácido sulfúrico y se valora con KMnO₄ 0,1 M, gastándose 5 mL de la misma. Sabiendo que el nitrito pasa a nitrato y que el permanganato a ión Mn²⁺:

- a) Escribe y ajusta por el método del ión-electrón la reacción redox que tiene lugar.
- b) Determina el porcentaje de nitrito de potasio en la muestra inicial, si su masa era de 0,125 g. DATOS: $A_r(N) = 14$ u; $A_r(O) = 16$ u; $A_r(Mn) = 55$ u; $A_r(K) = 39$ u.

Resultado: b) 84,8 %.

PROBLEMA 6.- En un recipiente de 250 mL se introducen 0,45 g de N_2O_4 (g) y se calienta hasta 40 °C, disociándose en un 42 %. Calcula:

- a) La constante K_c del equilibrio $N_2O_4(g) \implies 2 NO_2(g)$.
- b) La composición de la mezcla si se reduce el volumen del recipiente a la mitad sin variar la temperatura.

DATOS: $A_r(N) = 14 u$; $A_r(O) = 16 u$.

Resultado: a) $K_c = 2,37 \cdot 10^{-2}$; b) $3,3 \cdot 10^{-3}$ moles N_2O_4 y $3,15 \cdot 10^{-3}$ moles de NO.