UNIVERSIDADES DE MURCIA / P.A.U. – LOGSE – JUNIO 2011 / ENUNCIADOS

OPCIÓN A

CUESTION 1.- Escribe las configuraciones electrónicas e indica el símbolo de los siguientes elementos.

- a) El elemento del grupo 14 de mayor carácter metálico.
- b) El elemento del tercer período de mayor radio atómico.

b) La adición de AgNO₃, ¿provocará una disminución de la concentración de ión haluro en cualquiera de las disoluciones anteriores? Razona la respuesta utilizando los equilibrios químicos necesarios.

CUESTIÓN 3.- Calcula el pH de una disolución preparada al disolver 0,34 g de NH₃ en 200 mL de agua. DATOS: K_b (NH₃) = 1,8 · 10⁻⁵.

Resultado: pH = 11,127.

CUESTIÓN 4.- Nombra o formula los siguientes compuestos: Peróxido de potasio; carbonato de bario; ácido acético; fenol; 2-butino; HgCl₂; Co(OH)₃; PbO₂; (CH₃ – CH₂ – CH₂)₂ – NH; CH₃ – CH₂ – CHBr – CH₂ – CH(CH)₃ – CH₃.

 $\textbf{PROBLEMA 5.- Para la reacción} \quad KMnO_4 \ (aq) + HCl \ (aq) \ \rightarrow \ MnCl_2 \ (aq) + KCl \ (aq) + Cl_2 \ (g) + H_2O(l)$

- a) Ajústela, en forma molecular, por el método ión-electrón.
- b) Determina el peso equivalente del agente oxidante.
- c) Calcule que volumen de Cl2, a 700 mm Hg y 30°C, que se obtiene al hacer reaccionar 150 ml de HCl del 35% de riqueza y densidad 1,17 g/cm3 con la cantidad necesaria de $KMnO_4$.

 $\begin{array}{l} DATOS: \ A_{r} \ (Mn) = 55 \ u; \ \ A_{r} \ (K) = 39,1 \ u; \ \ A_{r} \ O) = 16 \ u; \ \ A_{r} \ (Cl) = \ 35,5 \ u; \ \ A_{r} \ (H) = \ 1 \ u; \\ R = 0,082 \ atm \cdot L \cdot mol^{-1} \cdot K^{-1}. \end{array}$

Resultado: b) 31,62 g; c) V = 14,19 L.

PROBLEMA 6.- Teniendo en cuenta las siguientes ecuaciones termoquímicas:

- (1) CO (g) + 1/2 O₂ (g) \rightarrow CO₂ (g) Δ H = -283,0 KJ
- $(2) \ CH_3OH \ (g) + 3/2 \ O_2 \ (g) \rightarrow CO_2(g) + 2 \ H_2O \ (l) \qquad \Delta H = -764,4 \ kJ$
- (3) $H_2(g) + 1/2 O_2(g) \rightarrow H_2O(l)$ $\Delta H = -285.8 \text{ KJ}$
- a) Calcule la variación de entalpía de la reacción de síntesis de metanol:
- $CO(g) + 2 H_2(g) \rightarrow CH_3OH(g).$
- b) Determine la cantidad de calor puesta en juego en la síntesis de 1 Kg de metanol, ¿Es un proceso endotérmico?
- c) ¿Cuál será el signo de ΔS para la reacción de síntesis de metanol? ¿Será espontánea a cualquier temperatura?

Resultado: a) $\Delta H = -90.2 \text{ kJ}$; b) -2.818.75 kJ; c) $\Delta S < 0$; No.

OPCIÓN B

CUESTIÓN 1.- Explica por qué:

- a) H₂O tiene un punto de ebullición más alto que el H₂S.
- b) $C_{20}H_{42}$ tiene un punto de ebullición más alto que el C_4H_{10} .

CUESTIÓN 2.- Indica razonadamente qué sucederá cuando a una disolución de FeSO₄ se le añade Zn. DATOS: E^o (Fe²⁺/Fe) = 0,44 V; E^o (Zn²⁺/Zn) = -0,76 V.

CUESTIÓN 3.- Calcula la masa de hidróxido de sodio del 80 % de riqueza necesaria para preparar 250 mL de una disolución 0,25 M en NaOH.

Resultado: 3,125 g NaOH impuro.

PROBLEMA 5.- Para la reacción $H_2S(g) + I_2(s) \implies 2HI(g) + S(s)$ que se encuentra en equilibrio a 60° C las presiones parciales de HI y H_2S son 3,65 atm y 9,96 atm, respectivamente.

- a) Determine los valores de Kp y Kc a 60°C.
- b) Calcule la presión total si a 60°C en un matraz de 1 L en el que previamente se realizó el vació, se introduce H₂S a 746 mm de Hg y 10 g de I₂ y se deja que se establezca el equilibro.

DATOS: $A_r(I) = 126,9 \text{ u}; R = 0.082 \text{ atm} \cdot L \cdot \text{mol}^{-1} \cdot K^{-1}.$

Resultado: a) $K_p = 134$ atm; $K_c = 0.049$ M; b) $P_t = 1.21$ atm.

PROBLEMA 6.- El etano se puede obtener por hidrogenación de eteno:

 $CH_2 = CH_2(g) + H_2(g) \rightarrow CH_3 - CH_3(g) \Delta H^\circ = -137 \text{ kJ} \cdot \text{mol}^{-1}.$

- a) Calcule la entalpía del enlace C = C si las energías de enlace C C, H H, C H son respectivamente 346, 391 y 413 kJ.mol.
- b) Calcule la masa de etano formada a partir de 20 L de C₂H₄ y 15 L de H₂ medidos en condiciones estándar. ¿Cuál es el calor desprendido?

Resultado: a) $\Delta H_{C=C} = 716 \text{ kJ} \cdot \text{mol}^{-1}$; b) 20,1 g etano.