UNIVERSIDADES DE MADRID / P.A.U. – LOGSE – SEPTIEMBRE 2004 / ENUNCIADOS

CUESTIÓN 1.- La reacción de obtención de polietileno a partir de eteno:

 $n CH_2=CH_2(g) = [-CH_2-CH_2-]_n(s)$, es exotérmica:

- a) Escribe la expresión de la constante de equilibrio, K_p.
- b) ¿Qué tipo de reacción de polimerización se produce?
- c) ¿Cómo afecta un aumento de la temperatura a la obtención de polietileno?
- d) ¿Cómo afecta un aumento de la presión total del sistema a la obtención de polietileno?

CUESTIÓN 2.- Considera las siguientes moléculas: H₂O, HF, H₂, CH₄ y NH₃.

Contesta justificadamente a cada una de las siguientes cuestiones:

- a) ¿Cuál o cuáles son apolares?
- b) ¿Cuál presenta el enlace con mayor contribución iónica?
- c) ¿Cuál presenta el enlace con mayor contribución covalente?
- d) ¿Cuál o cuáles pueden presentar enlace de hidrógeno?

CUESTIÓN 3.- La reacción en fase gaseosa $A + B \rightarrow C + D$ es endotérmica y su ecuación cinética es $v = k \cdot [A]^2$. Justifica si las siguientes afirmaciones son verdaderas o falsas:

- a) El reactivo A se consume más deprisa que el B.
- b) Un aumento de presión total produce un aumento de la velocidad de la reacción.
- Una vez iniciada la reacción, la velocidad de reacción es constante si la temperatura no varía.
- d) Por ser endotérmica, un aumento de temperatura disminuye la velocidad de reacción.

CUESTIÓN 4.- Para cada una de las siguientes reacciones:

- 1) $CH_3-CH_2-COOH + CH_3OH \rightarrow$
- 2) $CH_2=CH_2 + Br_2 \rightarrow$
- 3) $CH_3-CH_2-OH + H_2SO_4 + calor \rightarrow$
- 4) CH_3 - CH_2 - $Br + NaOH \rightarrow$
- a) Completa las reacciones.
- Nombra los productos y reactivos orgánicos. Di de qué tipo de reacción se trata en cada caso.

CUESTIÓN 5.- Teniendo en cuenta la siguiente reacción global, en medio ácido y sin ajustar:

$$K_2Cr_2O_7 + HI \rightarrow KI + CrI_3 + I_2 + H_2O$$
:

- a) Indica los estados de oxidación de todos los átomos en cada una de las moléculas de la reacción.
- b) Escribe y ajusta las semirreacciones de oxidación y reducción, así como la reacción global.

OPCIÓN A

PROBLEMA 1.- El clorato de potasio (s) se descompone, a altas temperaturas, para dar cloruro de potasio (s) y oxígeno molecular (g). Para esta reacción de descomposición, calcula:

- a) La variación de entalpía estándar.
- b) La variación de entropía estándar.
- c) La variación de la energía de Gibbs estándar.
- d) El volumen de oxígeno, a 25 ° C y 1 atm, que se produce a partir de 36,8 g de clorato de potasio.

DATOS: $A_r(K) = 39 \text{ u}$; $A_r(Cl) = 35,5 \text{ u}$. $A_r(O) = 16 \text{ u}$.

	$\Delta \mathrm{H_f}^0 (\mathrm{kJ \cdot mol}^{-1})$	$\Delta G_{\rm f}^{0} ({\rm kJ \cdot mol}^{-1})$	S^0 (J· mol ⁻¹ ·K ⁻¹)
KClO ₃ (s)	-391,2	-289,9	143
KCl (s)	-435,9	-408,3	82,7
$O_2(g)$	0	0	205

Resultado: a) $-44.7 \text{ kJ} \cdot \text{mol}^{-1}$; b) $247.2 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$; c) $-118.4 \text{ kJ} \cdot \text{mol}^{-1}$; d) 10.99 L.

PROBLEMA 2.- En un reactor de 1 L, a temperatura constante, se establece el equilibrio

 $NO_2(g) + SO_2(g) \implies NO(g) + SO_3(g)$, siendo las concentraciones molares en el equilibrio: $[NO_2] = 0.2 \text{ M}$, $[SO_2] = 0.6 \text{ M}$, [NO] = 4 M y $[SO_3] = 1.2 \text{ M}$.

- a) Calcula el valor de K_c a esa temperatura.
- b) Si se añade 0,4 moles de NO₂, ¿cuál será la nueva concentración de reactivos y productos cuando se restablezca de nuevo el equilibrio?

Resultado: a) $K_c = 40$; b) $[NO_2] = [SO_2] = 0.386$ M; [NO] = 4.214 M; $[SO_3] = 1.414$ M.

OPCIÓN B

PROBLEMA 1.- En el cátodo de una pila se reduce el dicromato de potasio en medio ácido a cromo (III).

- a) ¿Cuántos moles de electrones deben llegar al cátodo para reducir 1 mol de dicromato potásico?
- b) Calcula la cantidad de Faraday que se consume, para reducir todo el dicromato presente en una disolución, si ha pasado una corriente eléctrica de 2,2 A durante 15 minutos.
- c) ¿Cuál será la concentración inicial de dicromato en la disolución anterior, si el volumen es de 20 mL?

DATOS: 1 F = 96500 c

Resultado: a) 6 moles de electrones; b) 0,0205 F; c) 0,17 M.

PROBLEMA 2.- En una cámara cerrada de 10 L a la temperatura de 25 ° C se introduce 0,1 mol de propano con la cantidad de aire necesaria para que se encuentre en proporciones estequiométricas con el O₂. A continuación se produce la reacción de combustión del propano gaseoso, alcanzándose la temperatura de 500 ° C.

- a) Ajusta la reacción que se produce.
- b) Determina la fracción molar del N₂ antes y después de la combustión.
- c) Determina la presión total antes y después de la combustión.

DATOS: $A_r(C) = 12 \text{ u}$; $A_r(H) = 1 \text{ u}$; $R = 0.082 \text{ atm} \cdot \text{L} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$; 80 % N_2 y 20 % O_2 .

Resultado: b) $\chi_1 = 0.77$ y $\chi_2 = 0.74$; c) $P_1 = 6.35$ atm y $P_2 = 17.11$ atm.