UNIVERSIDADES DE MADRID / P.A.U. – LOGSE – SEPTIEMBRE 2003 / ENUNCIADOS

CUESTIÓN 1.- Sabiendo que las temperaturas de 3550, 650, - 107 y - 196 ° C corresponden a las temperaturas de fusión de los compuestos nitrógeno, aluminio, diamante y tricloruro de boro:

- a) Asigna a cada compuesto el valor que le corresponde a su temperatura de fusión y justifica la asignación.
- b) Justifica los tipos de enlaces y/o las fuerzas intermoleculares que están presentes en cada uno de los compuestos cuando se encuentran en estado sólido.

CUESTIÓN 2.- Razona si son correctas o incorrectas las siguientes afirmaciones:

- a) En una reacción química no puede ser nunca $\Delta G = 0$.
- b) ΔG es independiente de la temperatura.
- c) La reacción no es espontánea si $\Delta G > 0$.
- d) La reacción es muy rápida si $\Delta G < 0$.

CUESTIÓN 3.- Para la reacción en fase gaseosa ideal: $A + B \rightarrow C + D$ cuya ecuación cinética o "ley de velocidad" es $v = k \cdot [A]$, indica como varía la velocidad de reacción:

- a) Al disminuir el volumen del sistema a la mitad.
- b) Al variar las concentraciones de los productos, sin modificar el volumen del sistema.
- c) Al utilizar un catalizador.
- d) Al aumentar la temperatura.

CUESTIÓN 4.- Considerando los valores de K_a de los ácidos HCN, C₆H₅COOH, HClO₂ y HF, contesta razonadamente a las siguientes preguntas:

- a) ¿Cuál es el orden de mayor a menor acidez en agua?
- b) A igual concentración, ¿cuál de ellos presenta una disolución acuosa con menor pH?
- c) Utilizando el equilibrio de ionización en disolución acuosa, ¿cuáles son sus bases conjugadas?
- d) Ordena las bases conjugadas de mayor a menor basicidad.

DATOS: $K_a(HCN) = 10^{-10}$; $K_a(C_6H_5COOH) = 10^{-5}$; $K_a(HClO_2) = 10^{-2}$; $K_a(HF) = 10^{-4}$.

CUESTIÓN 5.- Formula las reacciones orgánicas que se proponen a continuación. Indica el tipo de reacción que participa en cada caso y nombra todos los compuestos orgánicos formados en ellas.

- a) Propanol + H_2SO_4 + calor \rightarrow
- b) 1-Buteno + HCl \rightarrow
- c) 2-Cloropropano + NaOH →
- d) Propino + 2 H_2 + catalizador \rightarrow

OPCIÓN A

PROBLEMA 1.- Un ácido (HA) está disociado al 0,5 % en disolución 0,3 M. Calcula:

- a) La constante de disociación del ácido.
- b) El pH de la disolución.
- c) La concentración de iones OH⁻.

Resultado: a) $K_a = 7.53 \cdot 10^{-6}$; b) pH = 2.82; c) $[OH^-] = 6.67 \cdot 10^{-12}$.

PROBLEMA 2.- La entalpía de combustión del butano es $\Delta H_c = -2642 \text{ kJ} \cdot \text{mol}^{-1}$, si todo el proceso tiene lugar en fase gaseosa:

- a) Calcula la energía media del enlace O H.
- b) Determina el número de bombonas de butano (6 kg de butano/bombona) que hacen falta para calentar una piscina de 50 m³ desde 14 a 27 ° C.

DATOS: $R = 0.082 \text{ atm} \cdot L \cdot \text{mol}^{-1} \cdot K^{-1}$; $A_r(H) = 1 \text{ u}$; $A_r(C) = 12 \text{ u}$; $A_r(O) = 16 \text{ u}$; $C_{espec.}$ del agua = 4,18 kJ · $K^{-1} \cdot kg^{-1}$; $E_{C-C} = 346 \text{ kJ} \cdot \text{mol}^{-1}$; $E_{C-O} = 730 \text{ kJ} \cdot \text{mol}^{-1}$; $E_{O-O} = 487 \text{ kJ} \cdot \text{mol}^{-1}$; $E_{C-H} = 413 \text{ kJ} \cdot \text{mol}^{-1}$; densidad agua = 1 kg · L^{-1} .

Resultado: a) $\Delta H_{O-H} = 513,55 \text{ kJ} \cdot \text{mol}^{-1}$; b) 9,94 bombonas.

OPCIÓN B

PROBLEMA 1.- Se realiza la electrólisis de una disolución acuosa que contiene Cu²⁺. Calcula:

- a) La carga eléctrica necesaria para que se depositen 5 g de Cu en el cátodo. Expresa el resultado en culombios.
- ¿Qué volumen de H₂ (g), medido a 30 ° C y 770 mm Hg, se obtendría si esa carga eléctrica se emplease para reducir H^+ (acuoso) en un cátodo? DATOS: R=0.082 atm \cdot L \cdot mol $^{-1}$ · K $^{-1}$; $A_r(Cu)=63.5$ u; F=96500 C.

Resultado: a) Q = 15196,85 C; b) V = 1,925 L.

PROBLEMA 2.- El equilibrio $PCl_5(g) \Rightarrow PCl_3(g) + Cl_2(g)$ se alcanza calentando 3 g de pentacloruro de fósforo hasta 300 ° C en un recipiente de medio litro, siendo la presión final de 2 atm. Calcula:

- a) El grado de disociación del pentacloruro de fósforo.

b) El valor de K_p a dicha temperatura. DATOS: R=0.082 atm \cdot L \cdot mol⁻¹ \cdot K⁻¹; $A_r(Cl)=35.5$ u; $A_r(P)=31$ u.

Resultado: a) $\alpha = 48,6 \%$; b) $K_p = 0,62$ atm.