UNIVERSIDADES DE MADRID / P.A.U. – LOGSE – SEPTIEMBRE 2001 / ENUNCIADOS

CUESTIÓN 1.- Teniendo en cuenta los elementos Z = 7, Z = 13 y Z = 15:

- a) ¿Cuáles pertenecen al mismo período?
- b) ¿Cuáles pertenecen al mismo grupo?
- c) ¿Cuál es el orden creciente de su radio atómico?
- d) De los elementos Z = 13 y Z = 15, ¿cuál tiene el primer potencial de ionización mayor?

CUESTIÓN 2.- Considera el equilibrio 2 NOBr (g) \Rightarrow 2 NO (g) + Br₂ (g). Razona como variará el número de moles de Br₂ en el recipiente si:

- a) Se añade NOBr.
- b) Se aumenta el volumen del recipiente.
- c) Se añade NO.
- d) Se pone un catalizador.

CUESTIÓN 3.- Se tienen dos disoluciones acuosas, una de ácido salicílico HA ($K_a = 10^{-3}$) y otra de ácido benzoico HC ($K_a = 2 \cdot 10^{-5}$). Si la concentración de los dos ácidos es la misma, contesta razonadamente a las preguntas:

- a) ¿Cuál de los dos ácidos es más débil?
- b) ¿Cuál de los dos ácidos tiene un grado de disociación mayor?
- c) ¿Cuál de las dos disoluciones da un valor menor de pH?
- d) ¿Cuál de las dos bases conjugadas es más débil?

CUESTIÓN 4.- Se dispone de una pila formada por un electrodo de cinc, introducida en una disolución 1 M de Zn(NO₃)₂ y conectado con un electrodo de cobre, sumergido en una disolución 1 M de Cu(NO₃)₂. Ambas disoluciones están unidas por un puente salino.

- a) Escribe el esquema de la pila galvánica y explica la función del puente salino.
- b) Indica en qué electrodo tiene lugar la oxidación y en cuál la reducción.
- c) Escribe la reacción global que tiene lugar e indica en qué sentido circula la corriente.
- d) ¿En qué electrodo se deposita el cobre?

CUESTIÓN 5.- Las poliamidas, también llamadas nailones, poseen una gran variedad de estructuras. Una de ellas, el nailon 6,6 se obtiene a partir del ácido hexanodioico y de la 1,6-hexanodiamina siguiendo el esquema que se indica a continuación:

n (ácido hexanodioico) + n (1,6-hexanodiamina) \rightarrow Poliamida + 2 n H₂O.

- a) Formula los compuestos que aparecen en la reacción.
- b) ¿Qué tipo de reacción química se da en este proceso?
- c) ¿Qué otro tipo de reacción de obtención de polímeros sintéticos conoce? Pon un ejemplo de uno de estos polímeros y menciona alguna aplicación del mismo.

OPCIÓN A

PROBLEMA 1.- Una disolución acuosa 0,01 M de un ácido débil HA tiene un grado de disociación de 0,25. Calcula:

- a) K_a del ácido.
- b) pH de la disolución.
- c) K_b de la base conjugada A¯.

DATOS: $K_w = 10^{-14}$.

Resultado: a)
$$K_a = 8.33 \cdot 10^{-4}$$
; b) pH = 3.08; c) $1.2 \cdot 10^{-11}$.

PROBLEMA 2.- El benceno, C_6H_6 , se puede obtener a partir de acetileno, C_2H_2 , según la reacción $3 C_2H_2$ (g) $\rightarrow C_6H_6$ (g). Las entalpías de combustión, a 25 ° C y 1 atm, para el acetileno y el benceno son, respectivamente, $-1300 \text{ kJ} \cdot \text{mol}^{-1} \text{ y} - 3267 \text{ kJ} \cdot \text{mol}^{-1}$.

- a) Calcula ΔH° de la reacción de formación del benceno a partir de acetileno y deduce si es un proceso endotérmico o exotérmico.
- b) Determina la energía (expresada en kJ) que se libera al quemar 1 g de benceno.

DATOS: $A_r(C) = 12 u$; $A_r(H) = 1 u$.

Resultado: a) $\Delta H_f^0 = -2600 \text{ kJ} \cdot \text{mol}^{-1}$; b) Q = -16,67 kJ.

OPCIÓN B

PROBLEMA 1.- Considera la reacción CO_2 (g) + H_2 (g) \leftrightarrows CO (g) + H_2O (g). Al mezclar inicialmente 49,3 moles de CO_2 y 50,7 moles de H_2 , a la temperatura de 1000 K, se encuentra una composición en el equilibrio de 21,4 moles de CO_2 , 22,8 moles de H_2 , 27,9 moles de H_2O .

- a) Determina el valor de K_c.
- b) Calcula la composición de la mezcla en el equilibrio cuando se parte inicialmente de 60 moles de CO₂ y 40 moles de H₂ en las mismas condiciones.

Resultado: a) $K_c = 1,595$; b) 33,35 moles CO_2 ; 13,35 moles H_2 ; 26,65 moles CO_2 H_2O_2 .

PROBLEMA 2.- Si se somete el hidrocarburo $C_{10}H_{18}$ a combustión completa:

- a) Formula y ajusta la reacción de combustión que se produce.
- b) Calcula el número de moles de O_2 que se consumen en la combustión completa de 276 g de hidrocarburo.
- c) Determina el volumen de aire, a 25 ° C y 1 atm, necesario para la combustión completa de dicha cantidad de hidrocarburo.

 $DATOS: \ A_{r}\left(C\right)=12 \ u; \ A_{r}\left(H\right)=1 \ u; \ R=0,082 \ atm \cdot L \cdot mol^{-1} \cdot K^{-1}.$

Resultado: b) 29 moles O₂; c) 3374,48 L aire.