UNIVERSIDADES DE CASTILLA-LEÓN/P.A.U.-LOGSE-JUNIO 2016/ENUNCIADOS OPCIÓN A

CUESTIÓN 1.- Escribe las estructuras electrónicas de Lewis, indicando el número de pares de electrones solitarios, y deduce, aplicando el modelo RPECV, la geometría de las especies:

- a) Dióxido de carbono, CO₂.
- b) Trifluoruro de boro, BF₃.
- c) Ión perclorato, ClO₄⁻.
- d) Agua, H₂O.

CUESTIÓN 2.- a) Define electronegatividad y explica la utilidad de dicho concepto.

b) Cuatro elementos designados como A, B, C y D tienen electronegatividades 3,8; 3,3; 2,8 y 1,3 respectivamente. Dispón, razonadamente, los compuestos AB, AC y AD en orden creciente de carácter covalente.

PROBLEMA 1.- El bromuro potásico (KBr) reacciona con ácido sulfúrico concentrado obteniéndose dibromo líquido (Br₂), dióxido de azufre (SO₂), sulfato de potasio (K₂SO₄) y agua.

- a) Escribe ajustadas las semirreacciones de oxidación y de reducción, la reacción iónica global y la reacción molecular.
- b) Determina el volumen de una disolución comercial de H₂SO₄ de concentración 17,73 M necesario para que reaccione con 25 g de bromuro potásico.
- c) Determina el volumen de dibromo líquido que se obtiene si el rendimiento de la reacción es del $100\,\%$.

DATOS: ddibromo = 2,8 g/mL; $A_r(Br) = 80 u$; $A_r(K) = 39 u$.

Resultado: b) V = 11.8 mL; c) V = 6 mL.

PROBLEMA 2.- Se toman 20 mL de ácido clorhídrico comercial de 35 % en masa y densidad 1,18 g/mL y se diluyen con agua destilada hasta un volumen final igual a 1,5 L.

- a) Determina el pH de la disolución resultante.
- b) Calcula el volumen de una disolución de NaOH 0,5 M que se necesitaría para neutralizar 50 mL de la disolución diluida de HCl.

Resultado: a) pH = 0.82; b) V = 15 mL.

CUESTIÓN 3.- Conceptos de química orgánica

- a) ¿Qué es un alcano? Escribe su fórmula general y pon un ejemplo.
- b) ¿Qué es un alqueno? Escribe su fórmula general y pon un ejemplo.
- c) ¿Qué es un alquino? Escribe su fórmula general y pon un ejemplo.

OPCIÓN B

CUESTIÓN 1.- Un conjunto de orbitales determinado se define con los números cuánticos n = 3 y l = 2.

- a) ¿Cuál es el nombre de esos orbitales atómicos?
- b) ¿Cuántos orbitales hay en ese conjunto?
- c) Escribe todos los valores permitidos de ml.
- d) Escribe un grupo de números cuánticos que describa un electrón en un orbital atómico 5s.

CUESTIÓN 2.- a) Calcula el valor del cambio de entropía estándar de la siguiente reacción a 25 °C: $H_2(g) + Cl_2(g) \rightarrow 2$ HCl (g).

b) Justifica la magnitud y el signo del valor encontrado. DATOS: $S^{\circ}[Cl_2(g)] = 223,0 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}; S^{\circ}[H_2(g)] = 131,0 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}; S^{\circ}[HCl(g)] = 187,0 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$.

Resultado: a) $\Delta S_r^o = 20.0 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$.

PROBLEMA1.- Se tienen 5 g de dihidrógeno y 5 g de helio en un volumen de 10 L a la temperatura de 30 °C.

- a) Calcula la presión que ejerce la mezcla de ambos gases.
- b) Calcula las presiones parciales de H₂ y de He en la mezcla de gases.

c) Indica qué leyes de los gases ha utilizado.

Resultado: a)
$$P = 9,32$$
 atm; b) $P(H_2) = 6,21$ atm; $P(I_2) = 3,1$ atm.

PROBLEMA 2.- La constante del producto de solubilidad del AgBr es $7.7 \cdot 10^{-13}$ a 25 °C. Calcula la solubilidad del AgBr, en g/L:

- a) En agua pura.
- b) En una disolución de bromuro sódico 10^{-3} M.
- c) Compara los valores obtenidos y justifica la diferencia encontrada.

Resultado: a)
$$1,65 \cdot 10^{-4} \text{ g} \cdot \text{L}^{-1}$$
; b) $1,45 \cdot 10^{-7} \text{ g} \cdot \text{L}^{-1}$.

PROBLEMA 3.- Se dispone de una disolución de hidróxido potásico de concentración 30 % en masa y densidad 1,29 g/mL.

- a) Calcula el volumen que hay que tomar de dicha disolución para preparar 2,50 L de disolución de KOH de pH = 12,5.
 - b) Explica el proceso que seguiría y el material de laboratorio utilizado.

Resultado: a) 7,96 mL.