UNIVERSIDADES DE CASTILLA-LEÓN / P.A.U. – LOGSE – JUNIO 2002 /ENUNCIADOS

OPCIÓN A

PROBLEMA 1.- Calcula el grado de disociación y la molaridad de una disolución de ácido acético en agua cuya concentración de protones es $1.34 \cdot 10^{-3}$ M y la constante de disociación ácida $K_a = 1.8 \cdot 10^{-5}$.

Resultado: Ca = 0,1 M; $\alpha = 1,34 \%$.

PROBLEMA 2.- La reacción de una mezcla de aluminio en polvo con óxido de hierro (III) genera hierro y óxido de aluminio. La reacción es tan exotérmica que el calor liberado es suficiente para fundir el hierro que se produce.

- a) Calcula el cambio de entalpía que tiene lugar cuando reaccionan completamente 53,96 g de aluminio con un exceso de óxido de hierro (III) a temperatura ambiente.
- b) ¿Cuántos gramos de hierro se obtienen si el rendimiento es del 85 %?

DATOS: $A_r(AI) = 27 \text{ u}$; $A_r(Fe) = 55.8 \text{ u}$; $A_r(O) = 16 \text{ u}$; $\Delta H_f^0 (Fe_2O_3)(s) = -822.2 \text{ kJ} \cdot \text{mol}^{-1}$; $\Delta H_f^0 (Al_2O_3)$ $= -1676 \text{ kJ} \cdot \text{mol}^{-1}$.

Resultado: a) $-853.8 \text{ kJ} \cdot \text{mol}^{-1}$; b) 94,79 g Fe.

CUESTIÓN 1.- Explica por qué:

- a) Las sustancias se queman más rápidamente en ${\rm O}_2$ puro que en aire.
- b) La unión entre el H₂ y el O₂ para formar H₂O es completamente inobservable a temperatura ambiente, mientras que a 700 ° C se verifica con carácter explosivo.
- c) Un trozo de madera arde más despacio que cuando la madera se encuentra en forma de virutas.

CUESTIÓN 2.- a) Escribe las configuraciones electrónicas externas características de los metales alcalinotérreos y de los halógenos. Pon un ejemplo de cada uno.

- b) ¿Quién presenta mayor afinidad electrónica, los metales alcalinos o los alcalinotérreos?
- c) Define potencial o energía de ionización. Indica y justifica qué elemento del sistema periódico tiene la mayor energía de ionización.

CUESTIÓN 3.-Un hidrocarburo saturado gaseoso esta formado por el 80 % de carbono. ¿Cuál es su fórmula molecular si la densidad en condiciones normales es $1,34 \text{ g} \cdot \text{L}^{-1}$.

DATOS: $A_r(C) = 12 \text{ u}$; $A_r(H) = 1 \text{ u}$.

Resultado: CH3-CH3 etano.

OPCIÓN B

PROBLEMA 1.- El aluminio se obtiene por electrólisis de su óxido, Al₂O₃, fundido. El cátodo es un electrodo de aluminio y el ánodo un electrodo de carbón (grafito), que se consume durante el proceso. Las reacciones que tienen lugar en los electrodos son:

Reacción anódica: $C(s) + 2 O^{2-} \rightarrow CO_2(g) + 4 e^{-}$. Reacción catódica: $Al^{3+} + 3 e^{-} \rightarrow Al(s)$.

- a) ¿Qué cantidad de electricidad es necesaria para obtener 10 Kg de aluminio?
- b) ¿Cuánto pesa el grafito consumido para obtener los 10 Kg de aluminio?

DATOS: $A_r(A1) = 27 \text{ u}$; $A_r(C) = 12 \text{ u}$; 1 F = 96500 C.

Resultado: a) 107222222,22 C; b) 3,33 Kg.

PROBLEMA 2.- Una muestra de 0,831 g de SO₃ se coloca en un recipiente de 1 L y se calienta a 1100 K. El SO_3 se descompone en SO_2 y O_2 de acuerdo con la reacción:

 $2 SO_3 (g) \implies 2 SO_2 (g) + O_2 (g)$. En el equilibrio, la presión total en el recipiente es de 1,3 atm. Calcula K_p y K_c.

DATOS: $A_r(S) = 32 \text{ u}; A_r(O) = 16 \text{ u}.$

Resultado: $K_c = 7 \cdot 10^{-4} \text{ moles} \cdot L^{-1}$; $K_p = 6.31 \cdot 10^{-2} \text{ atm.}$

CUESTIÓN 1.- Escribe y nombra tres isómeros de cadena abierta de fórmula C₅H₁₂ clasificándolos como isómeros estructurales o geométricos.

CUESTIÓN 2.- a) Indica cuál es la geometría de las moléculas AlH₃, BeI₂, PH₃ y CH₄ según la Teoría de la Repulsión de Pares de Electrones de la Capa de Valencia.

b) Señala y justifica si alguna de las moléculas anteriores es polar.

CUESTIÓN 3.- Si se parte de un ácido nítrico, HNO₃, del 68 % en masa y densidad 1,52 g · mL⁻¹:

- a) ¿Qué volumen debe utilizarse para obtener 100 mL de ácido nítrico del 55 % en masa y densidad $1,43 \text{ g} \cdot \text{mL}^{-1}$?

b) ¿Cómo se prepararía en el laboratorio? DATOS: $A_r(N) = 14 \text{ u}$; $A_r(O) = 16 \text{ u}$; $A_r(H) = 1 \text{ u}$.

Resultado: a) V = 76,05 mL.