UNIVERSIDADES CASTILLA-MANCHA/P.A.U. -LOGSE-SEPTIEMBRE 2001/ENUNCIADOS

OPCIÓN A

PROBLEMA 1.- Se tiene una disolución de amoníaco, NH₃, 0,01 N cuyo pH es 10,63. Calcula:

- a) La concentración de OH⁻ en el equilibrio. b) El grado de disociación del amoniaco.
- c) El valor de la constante de basicidad del amoníaco K_b.

Resultado: a)
$$[OH^{-}] = 4,27 \cdot 10^{-4} \text{ M}$$
; b) $\alpha = 4,27 \%$; c) $K_b = 1,8 \cdot 10^{-5}$.

PROBLRMA 2.- Para el equilibrio de disociación N_2O_4 (g) \leftrightarrows 2 NO_2 (g), a 27 ° C y 2 atm, la constante de equilibrio K_p vale 0,17. Calcula:

- a) El grado de disociación del N₂O₄ en estas condiciones.
- b) Las presiones parciales de los dos compuestos en el equilibrio.
- c) El valor de K_c a esa temperatura.

DATOS: $R = 0.082 \text{ atm} \cdot L \cdot \text{mol}^{-1} \cdot K^{-1}$.

Resultado: a)
$$\alpha = 14,28 \text{ %; b)}$$
 $P_{N_{2}O_{4}} = 1,50 \text{ atm; } P_{NO_{2}} = 0,50 \text{ atm; c)}$ $K_{c} = 6,9 \cdot 10^{-3} \text{ mol} \cdot \text{L}^{-1}$.

CUESTIÓN 1.- Razona si los siguientes enunciados son verdaderos o falsos:

- a) Existe un electrón con los siguientes números cuánticos (n, l, m, s): 2, 2, 1, 1/2).
- b) El radio de un elemento A siempre es inferior al radio del catión A⁺.
- c) El radio del anión A es mayor que el del elemento A.
- d) En un orbital p caben como máximo 6 electrones.

CUESTIÓN 2.- Escribe la ecuación iónica ajustada para la pila galvánica formada al sumergir una tira de magnesio en una disolución de Mg²⁺ y una tira de plata en una disolución de Ag⁺. Calcula el potencial normal de la pila.

DATOS:
$$E^{0}(Ag/Ag^{+}) = 0.8 \text{ V}$$
; $E^{0}(Mg^{2+}/Mg) = -2.37 \text{ V}$.

Resultado: f. e. m. =
$$3,17$$
 V.

CUESTIÓN 3.- Nombra los siguientes compuestos orgánicos e indica de entre ellos uno que presente isomería geométrica (cis-trans).

a)
$$CH3 - CH - CH = CH_2$$
 b) $CH_3 - CH - CH - COOH$ c) $CH_3 - CH = CH - COOH$.
 $CH_2 - CH_3$ CH_3 NH_2

OPCIÓN B

PROBLEMA 1.- En presencia de ácido sulfúrico, H₂SO₄, el clorato de potasio, KClO₃, oxida al sulfato de hierro (II), FeSO₄, a sulfato de hierro (III), Fe₂(SO₄)₃, reduciéndose a su vez a cloruro de potasio, KCl, y obteniéndose también agua en la reacción.

- a) Ajusta la ecuación iónica y molecular por el método del ión electrón.
- b) Calcula el volumen necesario de disolución 0,05 M de sulfato de hierro (II) que ha de reaccionar para obtener 150 g de sulfato de hierro (III), si el rendimiento es del 90 %.

DATOS: $A_r(Fe) = 55.8 \text{ u}$; $A_r(S) = 32 \text{ u}$; $A_r(O) = 16 \text{ u}$.

Resultado: b)
$$V = 13.5 L$$
.

PROBLEMA 2.- A 25 ° C, la variación de energía libre de Gibbs para la reacción de oxidación del

monóxido de carbono a dióxido de carbono
$$CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g) \text{ vale} - 257,19 \text{ kJ} \cdot \text{mol}^{-1}$$
.

Teniendo en cuenta que las entalpías estándar de formación del monóxido de carbono y del dióxido de carbono son -110,52 y -393,51 kJ \cdot mol⁻¹, respectivamente, calcula:

- a) La entalpía de la reacción de oxidación a 25 ° C.
- b) La variación de entropía de la reacción a esa misma temperatura.

Resultado: a)
$$-283 \text{ kJ} \cdot \text{mol}^{-1}$$
; b) $\Delta S = -87,25 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$.

CUESTIÓN 1.- Razona si los siguientes enunciados son verdaderos o falsos:

- a) El enlace iónico suele darse entre elementos de parecida electronegatividad.
- b) Los compuestos iónicos son solubles en agua.
- c) Las moléculas covalentes siempre son apolares.
- d) En la molécula de eteno los átomos de carbono presentan hibridación sp².

CUESTIÓN 2.- Justifica por qué el pH de una disolución acuosa de nitrato de amonio, NH₄NO₃, será ácido. Escribe las reacciones correspondientes.

CUESTIÓN 3.- En relación con el papel de los catalizadores en las reacciones químicas, responde justificadamente a las siguientes cuestiones:

- a) ¿Hacen variar ΔH de la reacción?
- b) ¿Hacen variar la energía de activación?