UNIVERSIDADES DE CANARIAS / P.A.U. – LOGSE – JUNIO 2017 / ENUNCIADOS OPCIÓN A

CUESTIÓN 1.- Dados los elementos A y B con números atómicos 14 y 38 respectivamente:

- a) Escribe la configuración electrónica de cada uno de ellos.
- b) Justifica en base a sus configuraciones electrónicas el grupo y periodo al que pertenecen cada uno.
 - c) Razona cuál de ellos tendrá menor energía de ionización (potencial de ionización)
 - d) Indica cuál será el ión más estable del elemento B y su configuración electrónica.

CUESTIÓN 2.- Para los siguientes compuestos orgánicos:

- A: CH₃-CH₂-CHCl-CH₂OH; B: ClCH₂-CH₂-CH₂-CH₂OH; C: ClCH₂-CH₂-CO-CH₃.
- a) Justifica qué compuesto presentará isomería óptica.
- b) ¿Qué compuestos son isómeros de posición?
- c) Propón y nombra un compuesto que sea isómero de función de C
- d) Nombra los compuestos A, B y C

PROBLEMA 1.- El fosgeno (COCl₂) es un gas asfixiante que fue empleado como arma química en la 1ª Guerra Mundial. Cuando se calienta a 707°C se descompone estableciéndose el equilibrio:

 $COCl_2(g) = CO(g) + Cl_2(g)$. En un recipiente de 5 litros se introducen 0,25 moles de $COCl_2(g)$ cuando se alcanza el equilibrio la presión en el recipiente es 6,26 atm. Calcular:

- a) El número de moles de cada sustancia presentes en el equilibrio
- b) El valor de la constante de concentraciones Kc
- c) El valor de la constante de presiones Kp

DATO: $R = 0.082 \text{ atm} \cdot L \cdot K^{-1} \cdot \text{mol}^{-1}$.

Resultado: a) $COCl_2 = 0.11$ moles; $CO = Cl_2 = 0.14$ moles; b) $K_c = 0.0356$; c) $K_p = 28.6$.

PROBLEMA 2.- Un matraz lleva la etiqueta: disolución acuosa de hidróxido de sodio (NaOH) 10⁻³ M.

- a) ¿Cuál será su pH?
- b) ¿Qué volumen de ácido clorhídrico (HCl) 0,02M necesitaremos para neutralizar 250 ml de esa disolución?
- c) Si mezclamos 100 mL de la disolución de hidróxido de sodio anterior con 20 mL de la disolución de ácido clorhídrico. ¿Cuál será el pH de la mezcla?

Resultado: a) pH = 11; b) V = 12.5 mL; c) pH = 2.6.

CUESTIÓN 3.- Ajusta por el método del ión-electrón la siguiente reacción:

 $K_2Cr_2O_7 + HI + HCl \rightarrow CrCl_3 + I_2 + KCl + H_2O$

- a) ¿Cuál es la especie oxidante y cuál es la reductora? ¿Qué especie se oxida y cuál se reduce?
- b) Ajusta la reacción iónica.
- c) Ajusta la reacción global.

OPCIÓN B

CUESTIÓN 1.- Para las moléculas: tricloruro de fósforo (cloruro de fósforo (III)) y tetracloruro de silicio (cloruro de silicio (IV))

- a) Escribe sus estructuras de Lewis e indica el número de pares de electrones no compartidos.
- b) Prediga la geometría que le corresponderá a cada una de ellas, justificando la respuesta.
- c) Razona si serán polares o no polares los enlaces P-Cl y Si-Cl
- d) Justifica la polaridad de ambas moléculas.

DATOS: $A_r(P) = 15 u$; $A_r(Si) = 14 u$; $A_r(Cl) = 17 u$.

CUESTIÓN 2.- Para el compuesto orgánico propeno (propileno)

- a) ¿Presentará isomería geométrica? Justifica tu respuesta.
- b) Escribe y nombra el compuesto formado por adición de Cl₂.
- c) Escribe y nombra el compuesto obtenido por adición de agua en medio ácido.
- d) Escribe la correspondiente reacción de combustión ajustada.

PROBLEMA 1.- Para el tratamiento de lesiones fúngicas en la piel es posible usar lociones que contienen ácido benzoico. Para ello se disuelven 0,61 g de ácido benzoico (C₆H₅COOH) en agua hasta un volumen de 100 mL, estableciéndose el siguiente equilibrio:

 $C_6H_5COOH + H_2O \implies C_6H_5COO^- + H_3O^+$. Si su grado de disociación en estas condiciones es $8,1.10^{-2}$. Calcular:

- a) La constante de acidez (Ka) del ácido benzoico.
- b) El pH de la disolución.
- c) La concentración de ácido benzoico que queda sin disociar presente en el equilibrio.
- d) El efecto que tendrá sobre las concentraciones presentes en el equilibrio la adición de pequeñas cantidades de ácido clorhídrico (HCl)

DATOS: $A_r(C) = 12 u$; $A_r(H) = 1 u$; $A_r(O) = 16 u$.

Resultado: a) $K_a = 3.56 \cdot 10^{-4}$; b) pH = 2.40; c) 0.046 M; d) Desplaza a izquierda.

PROBLEMA 2.- a) Si la solubilidad del cromato de plata (Ag_2CrO_4) a $20^{\circ}C$ es $2,5.10^{-4}$ moles \cdot L⁻¹. ¿Cuál será el valor de su constante del producto de solubilidad?

- b) La constante del producto de solubilidad del sulfato de bario (BaSO₄) es 1,5.10⁻¹⁰ a 20°C. Calcula su solubilidad (moles \cdot L⁻¹) a esa temperatura.
- c) Razona qué le ocurrirá a una disolución saturada de sulfato de bario (BaSO₄) si disolvemos en ella una sal muy soluble como el sulfato de sodio (Na₂SO₄)

Resultado: a) $K_{ps} = 1,56 \cdot 10^{-11}$; b) $S = 1,22 \cdot 10^{-5}$ M; c) Disminuye la solubilidad.

PROBLEMA 3.- Para evitar la corrosión de una pieza metálica se le aplica un tratamiento electrolítico usando una disolución de dicloruro de zinc (ZnCl₂)

- a) Indica las reacciones que tendrán lugar en el ánodo y en el cátodo.
- b) ¿Cuánto tiempo será necesario para depositar 3,27 g de Zn sobre la pieza si la intensidad de la corriente es de 1,5 A?
- c) ¿Qué volumen de gas cloro, medido a 1 atm y 27 °C se desprenderá?

DATOS: A_r (C1) = 35,5 u; A_r (Zn) = 65,4 u. F = 96.500 C. R = 0,082 atm · L · K^{-1} · mol⁻¹.

Resultado: b) t = 1.390 s; c) V = 1.23 L.