UNIVERSIDADES ARAGONESAS - EBAU. – SEPTIEMBRE 2018 / ENUNCIADOS OPCIÓN A

CUESTIÓN 1.- Justifica la veracidad o falsedad de las siguientes afirmaciones:

- a) La reacción: $CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$, $\Delta H > 0$ es espontánea a cualquier temperatura.
- b) La entalpía de la reacción $CH_4+Cl_2\to HCl+CH_3Cl$ calculada a partir de los valores de energía media de enlace, está entre -100~y-150~KJ/mol.

DATOS: ΔH_{enlace} (KJ/mol): (C-H) = 414; (Cl-Cl) = 242; (H-Cl) = 432 y (C-Cl) = 339.

CUESTIÓN 2.- a) Explica cuál es el tipo de hibridación que presenta el átomo central en la molécula de amoníaco y en la molécula de trifluoruro de boro.

- b) Justifica cuál de los elementos centrales de las moléculas anteriores será más electronegativo.
- c) Justifica si alguna de las dos moléculas del apartado a) es polar.

CUESTIÓN 3.- Considera los siguientes equilibrios:

 $N_2(g) + O_2(g) \leftrightarrow 2 NO_2(g) \Delta H > 0.$

 $2 H_2S + 3 O_2 \leftrightarrow 2 H_2O (g) + 2 SO_2 (g) \Delta H < 0.$

 $2~C~(s) + CO_2~(g)~\leftrightarrow 2~CO~(g)~\Delta H < 0.$

- a) Justifica en qué equilibrio Kp = Kc.
- b) Justifica en qué equilibrio se favorecerá la formación de productos al aumentar la presión y en cuál al aumentar la temperatura.

PROBLEMA 1.- Se tiene una disolución de ácido hipobromoso (HBrO) 0,1 M que tiene el mismo pH que una disolución de HCl $1,45 \cdot 10^{-5}$ M. Calcula:

- a) El pH de la disolución del ácido hipobromoso y su constante $K_{\rm a}$.
- b) El grado de disociación de HBrO si se reduce la concentración inicial a la mitad.
- c) El volumen de una disolución de NaOH 0,25 M necesario para neutralizar 20 mL de la disolución de HBrO 0,1 M. Escribe la ecuación de neutralización.

Resultado: a) pH = 4,84; $K_a = 2,1 \cdot 10^{-9}$; b) $\alpha = 0,0205$ %; c) V = 8 mL.

PROBLEMA 2.- Para la siguiente reacción redox: $K_2Cr_2O_7 + FeCl_2 + HCl \rightarrow CrCl_3 + FeCl_3 + KCl + H_2O$.

- a) Ajusta la ecuación por el método del ión-electrón señalando el agente oxidante y el agente reductor.
- b) Determina la masa de $CrCl_3$ obtenido si se adicionan 20,6 g de dicromato de potasio sobre 300 mL de $FeCl_2$ 2 M.
- c) ¿Qué volumen de HCl del 37% de riqueza y densidad 1,18 g/cm³ será necesario para consumir los 20,6 g de K₂Cr₂O₇?

DATOS: Masas atómicas: Cr = 52; K = 39; O = 16; Cl = 35,5; H = 1; Fe = 56.

Resultado: b) 22,19 g $CrCl_2$; c) V = 82 mL.

OPCIÓN B

CUESTIÓN 1.- a) Justifica si las siguientes configuraciones son posibles e identifica el elemento al que corresponde:

i) $1s^2 2s^2 2p^5$; ii) $1s^2 2s^2 2p^6 3s^2 2d^2$; iii) $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^3$; iv) $1s^2 2s^2 2p^6 3s^2 3p^6 4s^3$

b) Explica porqué hay tanta diferencia entre la temperatura de ebullición del agua (100°C) y la del sulfuro de hidrógeno (-60°C).

CUESTIÓN 2.- Responde de forma justificada a las siguientes preguntas:

- a) ¿Qué sal CaCO₃ o CaF₂ será más soluble en agua, sabiendo que sus constantes de solubilidad K_{ps} son $8.7 \cdot 10^{-9}$ y $4 \cdot 10^{-11}$ respectivamente? Escribe los correspondientes equilibrios de solubilidad.
 - b) ¿Tiene carácter anfótero el ión HCO₃⁻?

DATOS: H_2CO_3 ($K_{a1} = 4, 4 \cdot 10^{-7}$; $K_{a2} = 4, 6 \cdot 10^{-11}$).

CUESTIÓN 3.- Teniendo en cuenta los siguientes potenciales de reducción: $\varepsilon^{\circ}(Cl_2/Cl^-) = 1,36 \text{ V}; \ \varepsilon^{\circ}(I_2/I^-) = 0,53 \text{ V} \ \text{ } \varepsilon^{\circ}(Fe^{3+}/Fe^{2+}) = 0,77 \text{ V}$:

- a) Explica cuál de las dos afirmaciones siguientes es la correcta: el yodo oxidará al ión cloruro o el cloro oxidará al ión ioduro.
 - b) Justifica si el ión Fe^{2+} será oxidado de forma espontánea con Cl_2 o con I_2 .

- c) Ajusta las ecuaciones iónicas globales de los apartados anteriores que sean espontáneas y señala los agentes oxidante y reductor.
- PROBLEMA 1.- Se introducen 4 moles de metano junto con 1 mol de agua y 2,6 moles de hidrógeno gaseosos en un reactor de 2 L y se eleva la temperatura a 800°C. Sabiendo que una vez alcanzado el equilibrio CH₄ (g) + H₂O (g) \leftrightarrow CO (g) + 3 H₂ (g), se detectan 0,8 moles de monóxido de carbono, determina:
 - a) Las presiones parciales de todos los gases en el equilibrio.

b) Los valores de K_c y K_p . DATOS: R = 0.082 atm \cdot L \cdot mol $^{-1}$ \cdot K $^{-1}$.

Resultado: a) $P(CH_4) = 140,77$ atm; $P(H_2O) = 8,79$ atm; P(CO) = 35,2 atm; $P(H_2) = 219,96$ atm; b) $K_p = 3,024 \cdot 10^{-5}$; $K_c = 39,06$.

- PROBLEMA 2.- Para determinar la pureza de una muestra de sulfato de aluminio (III) se hace reaccionar con cloruro de bario para dar sulfato de bario y cloruro de aluminio (III).
 - a) Escribe la ecuación química ajustada.
- b) Calcula la pureza de una muestra de 0,5 g de sulfato de aluminio impuro que tras reaccionar genera 1 g de sulfato de bario.
- c) Calcula la cantidad de calor necesario para que reaccionen los 0,5 g de sulfato de aluminio teniendo en cuenta la pureza calculada en el apartado b).

DATOS: $\Delta H^{\circ}(\text{formación})$ (kJ/mol): sulfato de aluminio (s) = -3.420,4; cloruro de bario (s) = -860; sulfato de bario (s) = -1.464,4; cloruro de aluminio (s) = -692,5. Masas atómicas: Al = 27; S = 32,1; O =16; Ba = 137,3; Cl = 35,5.

Resultado: b) 96 %; c) $\Delta H_r = 0.31$ KJ.