UNIVERSIDADES DE ANDALUCÍA / P.A.U. – LOGSE – SEPTIEMBRE 2015 / ENUNCIADOS OPCIÓN A

CUESTIÓN 1.- Formula o nombra los siguientes compuestos:

a) Peróxido de bario; b) Sulfuro de galio (III); c) Butan-2-ol; d) WO₃; e) H₂SeO₃; f) CH₃CHICH₃.

CUESTIÓN 2.- a) Razona si para un electrón son posibles las siguientes combinaciones de números cuánticos: $(0, 0, 0, +\frac{1}{2})$; $(1, 1, 0, +\frac{1}{2})$; $(2, 1, -1, +\frac{1}{2})$; $(3, 2, 1, +\frac{1}{2})$.

- b) Indica en qué orbital se encuentra el electrón en cada una de las combinaciones posibles.
- c) Razona en cual de ellas la energía sería mayor.

CUESTIÓN 3.- Sabiendo el valor de los potenciales de los siguientes pares redox, indica razonadamente, si son espontáneas las siguientes reacciones:

- a) Reducción del Fe³⁺ a Fe por el Cu.
 b) Reducción de Fe²⁺ Fe por el Ni.
 c) Reducción del Fe³⁺ Fe²⁺ por el Zn.

 $DATOS: E^{o} (Cu^{2+}/Cu) = 0.34 \ V; \ E^{o} (Fe^{2+}/Fe) = -0.41 \ V; \ E^{o} (Fe^{3+}/Fe) = -0.04 \ V; \ E^{o} (Fe^{3+}/Fe^{2+}) = 0.77 \ E^{o} (Fe^{3+}/Fe) = -0.04 \ V; \$ V; $E^{\circ}(Ni^{2+}/Ni) = -0.23 \text{ V}$; $E^{\circ}(Zn^{2+}/Zn) = -0.76$.

CUESTIÓN 4.- Dados los compuestos CH₃CH₂CH₂Br y CH₃CH₂CH = CH₂, indica, escribiendo la reacción correspondiente:

- a) El que reacciona con H₂O/H₂SO₄ para dar un alcohol.
- b) El que reacciona con NaOH/H₂O para dar un alcohol.
- c) El que reacciona con HCl para dar 2-clorobutano.

PROBLEMA 1.- Teniendo en cuenta que las entalpías estándar de formación a 25 °C del butano, C₄H₁₀, dióxido de carbono y agua líquida son, respectivamente, $-125,7, -393,5 \text{ y} - 285,8 \text{ kJ} \cdot \text{mol}^{-1}$, calcula el calor de combustión estándar del butano a esa temperatura:

- a) A presión constante.
- b) A volumen constante.

DATOS: $R = 8.31 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$.

Resultado: a) $\Delta H_r^0 = -2.877,3 \text{ kJ} \cdot \text{mol}^{-1}$; b) $\Delta U = -2.868,63 \text{ kJ} \cdot \text{mol}^{-1}$.

PROBLEMA 2.- a) Sabiendo que el producto de solubilidad del Pb(OH)₂, a una temperatura dada es K_{sp} $= 4 \cdot 10^{-15}$, calcula la concentración del catión Pb²⁺ disuelto.

b) Justifica mediante el calculo apropiado, si se formará un precipitado de PbI2, cuando a 100 mL de una disolución 0,01 M de Pb(NO₃)₂ se le añaden 100 mL de una disolución de KI, 0,02

DATOS: K_{sp} (PbI₂) = 7,1 · 10⁻⁹.

Resultado: a) $S = 10^{-5} M$; b) Hay precipitación.

OPCIÓN B

CUESTIÓN 1.- Formula o nombra los siguientes compuestos:

a) Arseniato de cobalto (II); b) Hidróxido de magnesio; c) Tetracloruro de carbono; d) NaH; e) Hg(ClO₂)₂; f) CH₃CONH₂.

CUESTIÓN 2.- Se dispone de tres recipientes que contienen en estado gaseoso: A = 1 L de metano; B = 1 L2 L de nitrógeno molecular; C = 3 L de ozono, O_3 , en las mismas condiciones de presión y temperatura. Justifica:

- ¿Qué recipiente contiene mayor número de moléculas?
- b) ¿Cuál contiene mayor número de átomos?
- c) ¿Cuál tiene mayor densidad?

DATOS: $A_r(H) = 1 u$; $A_r(C) = 12 u$; $A_r(N) = 14 u$; $A_r(O) = 16 u$.

CUESTIÓN 3.- Indica, razonadamente, si cada una de las siguientes proposiciones es verdadera o falsa.

- a) Según el método RPECV, la molécula de amoniaco se ajusta a una geometría tetraédrica.
- b) En las moléculas SiH₄ y H₂S, en los dos casos el átomo central presenta hibridación sp³.

c) La geometría de la molécula BCl₃ es plana triangular.

CUESTIÓN 4.- a) La lejía es una disolución acuosa de hipoclorito sódico. Explica mediante la correspondiente reacción, el carácter ácido, básico o neutro de la lejía.

- b) Calcula las concentraciones de H₃O⁺ y OH⁻, sabiendo que el pH de la sangre es 7,4.
- c) Razona, mediante la correspondiente reacción, cuál es el ácido conjugado del ión HPO₄²⁻ en disolución acuosa.

PROBLEMA 1.- a) ¿Qué volumen de HCl del 36 % en peso y de densidad 1,17 g \cdot mL⁻¹ se necesitan para preparar 50 mL de una disolución de HCl del 12 % de riqueza en peso y de densidad 1,05 g \cdot mL⁻¹?

b) ¿Qué volumen de una disolución de $Mg(OH)_2$ 0,5 M sería necesario para neutralizar 25 mL de la disolución de HCl del 12 % en riqueza y de densidad 1,05 g · mL⁻¹? DATOS: $A_r(H) = 1$ u; $A_r(Cl) = 35,5$ u.

Resultado: a) V = 15.0 mL; b) V' = 86.0 mL.

PROBLEMA 2.- Dada la siguiente reacción:

 $KMnO_4 \ + \ KI \ + \ KOH \ \rightarrow \ K_2MnO_4 \ + \ KIO_3 \ + \ H_2O.$

- a) Ajusta las semirreacciones de oxidación y reducción por el método del ión-electrón y ajusta tanto la reacción iónica como la molecular.
- b) Calcula los gramos de yoduro de potasio necesarios para que reaccionen con 120 mL de disolución de permanganato de potasio 0,67 M.

DATOS: $A_r(I) = 129 u$; $A_r(K) = 39 u$.

Resultado: b) 2,234 g.